91影库

A Year of (Bio)chemical Elements

Rounding out the year
with nickel and zinc

Quira Zeidan
Dec. 1, 2019

To complete our celebration of the 150th anniversary of Dmitri Mendeleev’s periodic table, we look at nickel and zinc, two metallic elements with chemical symbols Ni and Zn and atomic numbers 28 and 30, respectively.

Nickel and ZincThis ribbon diagram shows the 3D structure of the enzyme urease in coordination with two nickel ions depicted in green.E. Jabri et al/Wikimedia Commons

Nickel can exist in oxidation states ranging from -2 to +4. The most abundant — Ni+2 — combines with common anions such as sulfate, sulfide, carbonate, nitrate and hydroxide. In contrast, zinc predominates in the oxidation +2 almost exclusively, acting as a strong reducing agent. Zinc forms binary compounds with most nonmetal and metalloid elements with the exception of noble gases.

Nickel is produced with iron in the final stages of nuclear reactions during violent explosions deep inside supergiant stars. As a result, these two elements are mixed abundantly in the interior of meteorites. The astrophysical origin of zinc is not entirely understood, but it might have involved the .

Nickel makes up only 0.008% of the Earth’s crust and occurs often as an alloy with iron in the planet’s core. It also exists in minerals in combination with sulfur and arsenic. Zinc is the 24th most common element in the Earth’s crust, where it is found primarily as zinc sulfide and as a binary alloy with metals including aluminum, gold, iron, lead, silver and nickel. Mineral weathering disperses small amounts of zinc into soil, seawater and the atmosphere.

Both nickel and zinc are essential for life and are present in many organisms. Nickel is recognized and transported into the cell by a variety of mechanisms: nonspecific influx across membrane proteins in bacteria and yeast, high-affinity uptake via transporters and permeases in certain bacteria, and incorporation through channels that preferentially carry other divalent cations — such as magnesium and calcium — in fungi and humans. Inside cells, nickel is inserted into the active site of many enzymes such as hydrogenase, nickel superoxide dismutase, carbon monoxide dehydrogenase, cis-trans isomerase and . Toxic excess intracellular free nickel is neutralized by binding to negatively charged molecules such as polyphosphate and sequestration of nickel-containing complexes into vacuoles.

The nickel-containing protein urease is important in the pathophysiology of liver cirrhosis, peptic ulcers and urinary stones. Urease is produced by bacteria that infect the gastrointestinal and urinary tracts, including Helicobacter pylori and Proteus mirabilis. It breaks down urea and produces ammonia, which increases the pH of the surrounding environment from neutral to basic and becomes toxic in the liver, the stomach lining, the kidneys and the blood stream.

Cells transport, use and sequester zinc much as they do other divalent metals. Photosynthetic bacteria of the genus Acidiphilium contain a that uses zinc as cofactor instead of the more common magnesium. Zinc-dependent phospholipases C in Clostridia, Bacillus or Listeria species may contribute to toxicity by breaking down host cell membranes. The coordination of one or more zinc ions by particular amino acids forms a zinc-finger motif that stabilizes the 3D structure of many proteins that bind DNA, such as nucleases and transcription factors.

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Quira Zeidan

Quira Zeidan is the ASBMB’s education and public outreach coordinator.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.