91影库

Journal News

Starved for oxygen, T cells flag in cancer fight

Laurel Oldach
Sept. 6, 2022

Cytotoxic T cells exist to kill cells subverted by infection or mutation. That makes them the focus of a lot of immuno-oncology research. Although cancers must slip past immune recognition to become established in the first place, immunotherapies such as checkpoint inhibitor antibodies or T cells with modified receptors can retrain the immune system to focus on cancer cells.

So far, this has worked best for blood cancers with many cells spread throughout the body. Solid tumors have been harder to treat. The inside of a tumor differs from normal tissue in complex ways that add up to make it a very immunosuppressive environment.

In a published in Molecular & Cellular Proteomics, postdoc James Byrnes and colleagues in Jim Wells’ lab at the University of California, San Francisco, report on their research into how the proteins on the surface of a cytotoxic T cell respond to various stimuli they might encounter in a tumor.

Using primary cells removed from human blood, the team focused on the surface proteome of cytotoxic CD8+ T cells. They investigated how interactions with T regulatory cells, which dampen T cells’ response and help end an immune reaction, and oxygen limitation, a feature of many tumors, changed the cytotoxic T cell surface.

A group of killer T cells (green and red) surround a cancer cell (blue, center). When a killer T cell makes contact with a target cell, the killer cell attaches and spreads over the target, then uses special chemicals housed in vesicles (red) to deliver the killing blow. The killer T cells then move on to find the next target.
National Institutes of Health
A group of killer T cells (green and red) surround a cancer cell (blue, center). When a killer T cell makes contact
with a target cell, the killer cell attaches and spreads over the target, then uses special chemicals housed
in vesicles(red) to deliver the killing blow. The killer T cells then move on to find the next target.

T regulatory cells are abundant in some solid tumors, and the team expected them to have dramatic effects. They were surprised to find that hypoxia had a much greater effect.

“The prevailing thought is that T regulatory cells are this super-potent immunosuppressive factor,” Byrnes said. But growing CD8+ T cells with T regulatory cells changed only a targeted subset of proteins, mostly the ones that increase in abundance after activation and are involved in signaling and proliferation.

“The T-regs are reversing the activation phenotype,” Byrnes said. “Hypoxia is a little more of a sledgehammer.”

Oxygen starvation shifted cytotoxic T cell expression of many surface proteins: The cells reduced immune signaling receptors and increased metabolic proteins, apparently in an effort to survive using glycolysis. Other studies have shown that hypoxia can make T cells more prone to kill but also slower to multiply; on balance, they may become less effective.

The Wells lab is focused primarily on antibody engineering, Byrnes said, and these results have given them interesting leads to follow as they consider new ways to mobilize the immune cells within a tumor. “We’re hoping … (to) gain biological insight into what some of these proteins are doing, as well as identify handles that we can use to therapeutically engage hypoxic T cells.”

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.