91影库

Journal News

Pan-kinase inhibitor for head and neck cancer enters clinical trials

Andrea Lius
March 18, 2025

Protein kinases, enzymes that catalyze reversible phosphorylation, are important players in cell signaling and are often dysregulated in cancer. For this reason, kinase inhibitors are popular cancer drugs that work by locking kinases in their active or inactive form, depending on function.

Kinase inhibitors that act on the active conformation, also known as adenosine triphosphate, or ATP,–competitive inhibitors, occupy the ATP binding pocket of the kinase domain, where the catalytic reaction takes place, and lock kinases in an active form. Because kinase domains across various proteins are well conserved, scientists can relatively easily develop ATP–competitive inhibitors that bind a variety of kinase targets.

3d illustration of throat cancer.
 

However, these inhibitors can be less effective than their counterparts that bind to other parts of the kinase and lock them in the inactive conformation. Binding to the ATP pocket only inhibits their enzymatic activity, but not their other functions like scaffolding, which may promote tumorigenesis. 

In a recent published in the Journal of Biological Chemistry, an international group of scientists reported a new kinase inhibitor, NXP900, that targets the inactive form of , or SFKs. The team showed that head and neck as well as esophageal squamous cell carcinomas are highly sensitive to NXP900 treatment both in cell culture and animals. The drug is currently in clinical trials.  

“It was surprising to me how responsive a lot of these cell lines were to NXP900,” , senior investigator at the National Institutes of Health’s National Cancer Institute and the study’s corresponding author, said.

Brognard said his group became interested in head and neck as well as esophageal squamous cell carcinomas because these cancers have a shared genetic component: sequence amplification of an SFK called Yes. Existing SFK Src kinase inhibitors like are ineffective and approved immunotherapies like have very low success rates in these types of cancer. So, patients are stuck with radiotherapy or chemotherapy, which can produce many unpleasant side effects.

Patients with these conditions are desperate for effective treatments, he said.

“One of the biggest discoveries of this paper was how we identified a patient cohort that could really benefit from NXP900,” Brognard said.

, a postdoctoral fellow at NCI and lead author of the paper, and Brognard said that NXP900 targets multiple members of the SFK, including Yes, Src and Lck. According to Brognard, this approach, commonly referred to as “polypharmacology,” goes a step further beyond simple kinase inhibitors.  

Kinases that are closely related can compensate for each other and drive drug resistance, Brognard said. For example, if we target Yes alone, we will likely observe resistance arising through compensation by other SFKs like Src or Lck, he said.

“Resistance will probably eventually still occur,” said Brognard. “But we can postpone it by targeting multiple cancer drivers simultaneously.”

Dash said that future research will home in on the molecular mechanisms of NXP900.

“We saw that some of the squamous cell carcinoma lines that we tested were sensitive to NXP900 while others were resistant,” she said. “We want to know why.”

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Andrea Lius

Andrea Lius is a Ph.D. candidate in the Ong quantitative biology lab at the University of Washington. She is an 91影库Today volunteer contributor.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.