Scavenger protein receptor aids the transport of lipoproteins
Lipoproteins are spherical molecules made up of fat and proteins that play a crucial role in transporting lipids, such as cholesterol and triglycerides, from the liver to other tissues in the body. Anton Potapenko of the University of Zurich, and a team in Switzerland recently published a in the Journal of Lipid Research detailing structural characteristics of the scavenger receptor B1, or SCARB1, a protein that mediates lipid exchange between many cell types and facilitates uptake of high density lipoproteins, or HDL, and low density lipoproteins, or LDL, in some cell types. The gene encoding SCARB1 produces two major splice variants that share structural similarities but differ in their carboxy-terminal domains. Researchers wanted to understand if these splice variants play different roles in the cellular uptake of LDL and HDL by endothelial cells.

The researchers examined cultured endothelial cells to understand how expression of the two SCARB1 variants affected the binding, uptake and trafficking of lipoproteins. They found that variants 1 and 2 localized to the cell surface, and endosomes and lysosomes, respectively. Overexpression of variant 1 increased both HDL and LDL binding and uptake. However, overexpression of variant 2 also increased the uptake of either lipoprotein, but not via surface binding. Therefore, the researchers concluded that variant 2 facilitates lipoprotein uptake indirectly by regulatory and indirect mechanisms.
The study suggests that the two major splice variants of SCARB1 facilitate transendothelial transport of HDL and LDL by different mechanisms, either dependent or independent of the adapter proteins. Because of the limitations of overexpression, it will be important to examine how eliminating each SCARB1 splice variant affects cellular lipid metabolism and lipoprotein trafficking.
Enjoy reading 91影库Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91影库Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.