Fat cells are a culprit in osteoporosis
Approximately 10 million Americans have osteoporosis, also known as a silent disease due to symptoms that go unnoticed until a fracture occurs. Scientists are focused on understanding the mechanisms that contribute to the loss of bone strength, as well as developing therapies for prevention and treatment.

Weibo Hunag, Feng Hua and Tong Suand a team in China published an in the Journal of Lipid Research. They investigated the relationship between bone marrow adipocytes, or BMAds, and osteoblast bone building cells. BMAds are fat cells that reside in the bone marrow, and contribute to 10% of the total body fat and occupy 50–70% of the marrow cavity space. Their abundance has been associated with aging, postmenopausal period, obesity, radiotherapy and chemotherapy and glucocorticoid treatments.
The researchers treated bone marrow osteoblast cultures with adipocytes and observed that the adipocytes transferred lipid droplets to the osteoblasts. RNA sequencing and Western blot showed that the lipid droplet–filled osteoblasts downregulated osteopontin, a major bone-forming protein, and other osteogenic proteins. Furthermore, the lipids seemed to upregulate the ferroptosis pathway in the osteoblasts, inducing cell death, and it decreased oxidative phosphorylation, which generates cellular energy. When the researchers treated the osteoblasts with ferroptosis inhibitors, they found that impediments to the osteoblast cells were reversed.
This work shows the ferroptosis pathway and proteins such as ABHD5 as important targets for the development of effective treatments and prevention therapies for osteoporosis. Looking ahead, the researchers will conduct further investigations into the activation mechanisms of these pathways to provide a solid foundation for clinical translation.
Enjoy reading 91影库Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91影库Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.