91影库

Journal News

Does a protein hold the key to Alzheimer鈥檚?

Jay Thakkar
Dec. 10, 2024

Alzheimer’s disease, or AD, is the best-known neurodegenerative disorder affecting cognitive functioning and accounts for 60% to 80% of dementia cases. Understanding the progression of AD is relevant for its treatment, and multiple hypotheses exist to explain how the disease progresses.

One of these is the tau hypothesis; tau is a protein that stabilizes microtubules, an important component in neurons. Misfolding of tau leads to its aggregation in cells. This accumulation of tau starts spreading throughout the brain of AD patients by moving from cell to cell.

In a recent published in the Journal of Biological Chemistry, Joanna Cooper at the University of Maryland School of Medicine, Aurelien Lathuiliere at Massachusetts General Hospital and a team of researchers focused on a receptor called Sortilin-related receptor 1, or SORL1, that is involved in tau accumulation inside the cells.

“SORL1 has been associated with Alzheimer’s disease in a sense that mutations have been found that may be causative, but there is no consensus as to how that is working,” Cooper said. “Most research previously has focused on its role with amyloid beta, which is the other main player in Alzheimer’s disease.”

Prior research showed that lower levels of SORL1 increase the generation of a polypeptide called amyloid beta, the main component of amyloid plaque found in AD patients. This new research indicates SORL1 increases tau seeding, highlighting a contradiction in the role of SORL1 in AD progression.

“I think it’s a new line of research with the potential to have translational implications for patients,” Lathuiliere said.

With amyloid beta, loss of function of SORL1 is problematic, whereas in the context of tau there might also be a gain of toxic function, Cooper explained. “That adds a whole dichotomy into thinking about what SORL1 does,” she said.

Researchers need to do more work in the lab to determine if SORL1 is a therapeutically relevant target for AD patients.

“It was really easy to identify that it acts as a direct binding partner to tau,” Cooper said. That simple experiment quickly gave conclusive results.

 “It was a lot more challenging to dig into what can SORL1 do and try to understand something that gives us insight it’s actual physiological function.”

The team used surface plasmon resonance to detect the binding affinity of SORL1 with tau. They conducted immunofluorescence staining and F枚rster resonance energy transfer assays to understand where tau was positioned among cells and to understand the implication of specific SORL1 mutations in AD patients.

Even if SORL1 isn’t targeted directly for therapeutics, this finding “provides context for the machinery that is helping to traffic tau and opens up a lot more understanding about how that process happens,” Cooper said.

Overall, tau seeding causes AD to progress. Understanding where tau is within and among cells and the receptors responsible for cellular uptake and transport will help researchers explore avenues for treating AD.

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jay Thakkar

Jay Thakkar is a researcher, who specializes in computer-aided drug design and discovery. He earned a bachelor's degree in chemical engineering from the Dwarkadas J. Sanghvi College of Engineering in Mumbai, India, and a master's degree in chemistry from the Stevens Institute of Technology in Hoboken, New Jersey, where he studied drug discovery. His hobbies include reading, driving on open roads and walking in the park.
 

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.