91影库

Health Observance

National Influenza Vaccination Week

John Arnst
Dec. 2, 2019

The year may be winding down, but flu season is still heating up. If you’ve been slacking on getting your annual shot, it’s not too late — in fact, the Centers for Disease Control and Prevention designated the first week of December as National Influenza Vaccination Week. While the flu vaccine remains the best line of defense against the fever, fatigue and range of respiratory symptoms of a genuine influenza infection, 91影库members have been investigating how influenza viruses interact with our cells and uncovering leads for new antivirals and improved vaccines.

Why glycosylation matters in building a better flu vaccine

If influenza viruses were DNA-based, we may well have developed a universal vaccine decades ago. But, as retroviruses, they have a tendency to rack up errors every time they replicate, gradually changing the makeup of their hemagglutinin and neuraminidase proteins and slipping ever beyond the protective yoke of each season’s vaccine. While efforts to develop a universal flu vaccine are under way at labs around the world, flu vaccine design processes currently don’t account for the glycosylation that influenza A viruses, the primary cause of human influenza illnesses, use to evade host antibodies. Deborah Chang and Joseph Zaia at Boston University  in the journal Molecular & Cellular Proteomics that developing methods to determine site-specific glycosylation of glycoproteins in influenza A viruses could enhance the efficacy of future flu vaccines.

Forever in search of new antivirals

Developing new antivirals can feel like an exercise in futility — just over a year after the drug Xofluza was approved for distribution in the United States, scientists at the University of Wisconsin–Madison found that influenza viruses in a quarter of patients who took the drug developed resistance to it. While few drugs make it all the way through the development pipeline,  that can take advantage of novel mechanisms to inhibit viral replication.

Histone deacetylases play a role in preventing influenza replication

Like almost all viruses, influenza A viruses hijack host machinery to replicate. In response to evidence that an optimal acetylation environment in host cells is favorable to this process, researchers at the University of Otago in New Zealand , which negatively regulate acetylation, against IAVs.

Influenza viruses love lipids

After influenza has hijacked a host cell’s machinery to crank out its RNA and proteins, it needs to get them wrapped in a protective lipid envelope so that new virions can venture forth and infect more host cells. Researchers at the University of Singapore recently  to investigate how IAVs interact with the host cells’ lipid metabolism during different stages of infection. They found that function of membrane-bound peroxisomes to be a common metabolic denominator and a potential key determinant for influenza virus replication.

Gut microbes, glycosphingolipids and influenza

Invariant natural killer T cells are versatile — they thwart tumors, attack pathogenic bacteria viruses and play a role in autoimmune diseases — and the glycosphingolipid α-galactosylceramide, produced by Bacteroides in the human gut, is key to their activation. Researchers at the University of Marburg and German Cancer Research Center  conditions including colitis, consumption of a Western diet and infection by influenza A virus tend to decrease levels of αGalCer. This suggests that modulating gut microbial-derived immunogenic lipids including αGalCerML may impact immunity.

Hosts and their viruses: a thematic series of review articles

Hot off the heels of the swine flu epidemic — an H5N1 strain from the antigenic shift that happened when two starkly different influenza strains infected the same pig population — Charles Samuel helped organize a JBC minireview series with the aim of understanding the structural basis for interactions between influenza viruses and host cells. .

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
John Arnst

John Arnst was a science writer for 91影库Today.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.