JBC: Seeking an off switch for celiac disease
Celiac disease is an autoimmune disorder that affects, by some estimates, nearly one in 100 people. Celiac symptoms ar triggered by gluten, a protein found in wheat and related plants, but gluten doesn’t act alone to cause the digestive problems that patients suffer. Rather, gluten induces an overactive immune response when it’s modified by the enzyme transglutaminase 2, or TG2, in the small intestine.
published in the Journal of Biological Chemistry identifies an enzyme that turns off TG2, potentially paving the way for new treatments for celiac disease. , a chemical engineering graduate student at Stanford University, led the study.
“Currently, therapies to treat people with celiac disease are lacking,” Yi said. “The best approach right now is just a strict adherence to a lifelong gluten-free diet. Perhaps the reason behind this is our relatively poor understanding of TG2.”
The biochemistry of how TG2 interacts with gluten and induces an immune response has been well studied, but more basic mysteries remain, such as how TG2 behaves in people without celiac disease. , the Stanford professor and director of Stanford Chemistry, Engineering & Medicine for Human Health, who oversaw the new study, has done research showing that TG2 can be active or inactive, depending on the forming or breaking of a specific chemical bond, called a disulfide bond, between two amino acids in the enzyme.
“Even though there’s a lot of transglutaminase 2 protein in the (small intestine), it’s all inactive,” Khosla said. “When it became clear that even though the protein was abundant, its activity was nonexistent in a healthy organ, the question became ‘What turns the protein on, and then what turns the protein off?’”
In 2011, Khosla’s team identified the enzyme that activates TG2 by breaking its disulfide bond. In the new paper, the researchers did experiments in cell cultures and found an enzyme that re-forms this bond, inactivating TG2. This enzyme, ERp57, is known mainly for helping fold proteins inside the cell. When it turns off TG2, it does so outside of cells, raising more questions about its functions in healthy people.
“Nobody really understands how (Erp57) gets outside the cell,” Khosla said. “The general thinking is that it’s exported from the cell in small quantities; this particular observation suggests that it actually does have a biological role outside the cell.”
TG2 is now the first protein known to have a reversible disulfide bond on/off switch of this type.
“This is a very different kind of on-and-off chemistry than the kind that medicinal chemists would (typically) use,” Khosla said.
Understanding this mechanism has led the team to investigate whether any drugs approved by the Food and Drug Administration could target the switch directly. Because previous studies have suggested that lack of TG2 doesn’t seem to affect the health of mice negatively, blocking TG2 is a promising avenue for treating celiac disease patients without requiring lifelong dietary changes.
Enjoy reading 91Ó°¿âToday?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91Ó°¿âToday
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Scientists find unexpected correlation between age and HDL-C levels
In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.

Computational tool helps scientists create novel bug sprays
Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.