91影库

News

Plants get a GMO glow-up

Genetically modified varieties are coming out of the lab and into homes and gardens
James W. Satterlee
By James W. Satterlee
Nov. 10, 2024

As any avid gardener will tell you, plants with sharp thorns and prickles can leave you looking like you’ve had a run-in with an angry cat. Wouldn’t it be nice to rid plants of their prickles entirely but keep the tasty fruits and beautiful flowers?

Not every rose has its thorn, thanks to gene editing.
James Satterlee, CC BY-SA
Not every rose has its thorn, thanks to gene editing.

who, along with my colleagues, recently across a variety of plants, including roses, eggplants and even some species of grasses. Genetically tailored, smooth-stemmed plants may eventually arrive at a garden center near you.

Acceleration of nature

Plants and other organisms evolve naturally over time. When random changes to their DNA, called mutations, enhance survival, they get passed on to offspring. , plant breeders have taken advantage of these variations to create high-yielding crop varieties.

In 1983, the , or GMOs, appeared in agriculture. , engineered to combat vitamin A deficiency, and are just a couple of examples of how genetic modification has been used to enhance crop plants.

Two recent developments have changed the landscape further. The advent of gene editing using a technique known as has made it possible to modify plant traits more easily and quickly. If the genome of an organism were a book, CRISPR-based gene editing is akin to adding or removing a sentence here or there.

This tool, combined with the increasing ease with which scientists can sequence an organism’s complete collection of DNA – or genome – is rapidly accelerating the ability to predictably engineer an organism’s traits.

By , our team was able to use gene editing to mutate the same gene in other prickly species, yielding smooth, prickle-free plants. In addition to eggplants, we got rid of prickles in a desert-adapted wild plant species with edible raisin-like fruits.

The desert raisin (Solanum cleistogamum) gets a makeover.
Blaine Fitzgerald,
The desert raisin (Solanum cleistogamum) gets a makeover.

We also used a virus to silence the expression of a closely related gene in roses, yielding a rose without thorns.

In natural settings, prickles defend plants against grazing herbivores. But under cultivation, edited plants would be – and after harvest, fruit damage would be reduced. It’s worth noting that prickle-free plants still retain other defenses, such as their that deter insect pests.

From glowing petunias to purple tomatoes

Today, DNA modification technologies are no longer confined to large-scale agribusiness – they are becoming available directly to consumers.

One approach is to mutate certain genes, like we did with our prickle-free plants. For example, scientists have created a by inactivating the genes responsible for bitterness. Silencing the genes that delay flowering in tomatoes has resulted in well suited to urban agriculture.

Another modification approach is to permanently transfer genes from one species to another, using recombinant DNA technology to yield what scientists call a transgenic organism.

The firefly petunia is genetically engineered to glow in the dark.
,
The firefly petunia is genetically engineered to glow in the dark.

At a recent party, I found myself crowded into a darkened bathroom to observe the faint glow of the host’s newly acquired , which contains the genes responsible for the ghost ear mushroom’s bioluminescent glow. Scientists have also modified a pothos houseplant with a gene from rabbits, which allows it to that promote the breakdown of .

Consumers can also grow the purple tomato, genetically engineered to contain pigment-producing genes from the snapdragon plant, resulting in antioxidant-rich tomatoes with a dark purple hue.
Norfolk Healthy Produce,
The Norfolk purple tomato is colorful to the core.

Consumers can also grow the , genetically engineered to contain pigment-producing genes from the snapdragon plant, resulting in antioxidant-rich tomatoes with a dark purple hue.

Risks and rewards

The introduction of genetically modified plants into the consumer market brings with it both exciting opportunities and potential challenges.

With genetically edited plants in the hands of the public, there could be less oversight over what people do with them. For instance, there is a risk of environmental release, which could have . Additionally, as the market for these plants expands, the quality of products may become more variable, necessitating new or more vigilant consumer protection laws. Companies could also apply patent rules limiting seed reuse, echoing some of the .

The future of plant genetic technology is bright – in some cases, quite literally. Bioluminescent golf courses, houseplants that emit tailored fragrances or flowers capable of changing their color in response to spray-based treatments are all theoretical possibilities. But as with any powerful technology, careful regulation and oversight will be crucial to ensuring these innovations benefit consumers while minimizing potential risks.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
James W. Satterlee
James W. Satterlee

James W. Satterlee is a postdoctoral fellow in plant genetics at Cold Spring Harbor Laboratory.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.