91影库

Feature

Modified pea proteins are shaping the future of meat alternatives

University of Minnesota scientists use enzymes to mimic beef texture in plant-based protein
Marissa Locke Rottinghaus
Nov. 6, 2024

Have you ever bitten into a plant-based burger expecting the texture of meat and gotten an astringent, chewy alternative? You can probably blame your disappointment on the pea proteins that make up ground beef alternatives from brands such as Beyond Meat.

Meat analogs such as the Impossible burger are made with wheat proteins, which produce a more realistic beef-like . And Impossible products, compared to Beyond, are sold by almost .

Fan Bu, a Ph.D. student at the University of Minnesota, uses cold plasma jet technology on pea protein isolate to eliminate contamination and improve solubility.
THE UNIVERSITY OF MINNESOTA PLANT PROTEIN INNOVATION CENTER
Fan Bu, a Ph.D. student at the University of Minnesota, uses cold plasma jet technology on pea protein isolate to eliminate contamination and improve solubility.

But your Impossible Whopper might be in for competition. , founder and director of the Plant Protein Innovation Center, and colleagues at the University of Minnesota are working to modify pea and other legume proteins so their more closely resembles beef.

Why? Wheat gluten is one of the leading causes of food allergies in the U.S. And legumes such as peas are easy to grow and have several .

Greener alternatives

According to some , the beef industry is one of the driving causes of climate change. A single cow produces about of methane and requires a whopping of water per year.
“Consumers are becoming more aware of the impact of the meat industry on the use of the current available land and the impact on the environment, such as greenhouse gas emissions, water use and soil health,” Ismail said.

, a senior scientist and leader of the Cardiovascular Nutrition Team at the Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, encourages people to cut down on the amount of meat they consume and shift to more plant foods for health as well as environmental benefits.

Alice Lichenstein
Alice Lichenstein

“The biggest differences between beef and plant-based meat alternatives are that the latter contain more unsaturated and less saturated fat and is better for the environment,” Lichtenstein said. “However, it is important to keep in mind that plant-based meat alternatives are an ultraprocessed food and tend to be high in sodium.”

Replacing beef with plant-based alternatives could slow the effects of climate change. However, the U.S. is also entrenched in a water crisis. According to , nearly half of the country’ freshwater basins may not be able to meet national water demands by 2071.

According to Lichtenstein, people can modify their food choices in other ways to make them better for the environment, for instance, by choosing plant-based sources of protein in their unmodified state such as legumes, peas or beans, and nuts, as well as dairy products and eggs in moderate amounts.

This is where pea crops come in. Compared to pea plants, wheat crops require about seven times more per year. So, prefer to grow peas over wheat.

Meat analog molecular mechanisms

Before Ismail founded the Plant Protein Innovation Center in 2018, she saw a disconnect between academic and industry food science.

Pam Ismail, a professor of food science, started the Plant Protein Innovation Center to seek sustainable and environmentally friendly sources of plant-based proteins.
THE UNIVERSITY OF MINNESOTA PLANT PROTEIN INNOVATION CENTER
Pam Ismail, a professor of food science, started the Plant Protein Innovation Center to seek sustainable and environmentally friendly sources of plant-based proteins.

“In industry, I noticed that there is a big lag in the knowledge and research on proteins,” Ismail said. “And I thought, if I don’t start the center, somebody else will.”

Ismail works with companies such as Bayer, Cargill, General Mills and other corporations to bring academic discoveries to the market. Driven by consumer demand for more healthful meat alternatives with realistic textures, these companies are investing resources in protein research.

Ismail and her team decided to see if they could modify the molecular structure of pea protein to impart a firm, gel-like texture.

Unlike wheat gluten and soy proteins, pea and chickpea proteins have low molecular weight polymers and form fewer disulfide bonds within and between protein molecules. Accordingly, pea and chickpea proteins form a relatively weak gel, making the end product loose and stodgy.

“We try to look at and adapt the furthest upstream steps during protein ingredient production,” Ismail said. “Can we protect the protein integrity during processing so it’s not damaged or make it more soluble or stable while forming a gel?”

Ismail and colleagues hypothesized that modifying pea and chickpea proteins with an enzyme might make them more likely to link up. They treated the proteins with transglutaminase, what Ismail calls a “meat glue” that promotes covalent bonds between glutamine and lysine, both of which are abundant in these proteins. This enzyme naturally occurs in the human body and promotes wound healing.

Compared with unmodified and commercially available pea and chickpea proteins, their transglutaminase-treated counterparts formed larger molecular-weight polymers and stronger gels.

“When you add transglutaminase, it promotes a certain linkage between protein molecules to make them form a longer polymer so that they can form a gel and hold water,” Ismail said.

After downstream processing, transglutaminase-treated proteins could create a firm, beef-like texture in a product like a burger, she said. Ismail and her team will work with company partners to figure out how these results could be efficiently translated into a marketable product.

“We need to develop more sustainable processes to get the protein out of the plant,” Ismail said. “There’s a lot of work involved when scaling something from bench to the industry scale. That’s why we partner with companies: to ensure these processes are scalable and sustainable.”

University of Minnesota
University of Minnesota scientists are studying pea plants to help them adapt to climate change and create better meat alternatives.

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Marissa Locke Rottinghaus

Marissa Locke Rottinghaus is the Editorial Content Manager for ASBMB.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.