Targeting cardiolipin modification in a genetic disorder
Barth syndrome, an X-linked disorder that primarily affects males, is characterized by weak skeletal muscles, cardiomyopathy and low neutrophils (the white blood cells that fight bacteria), among other medical concerns. The symptoms can be treated, but no disease-specific therapies have been approved. This rare and serious lipid metabolism disorder is caused by pathogenic variants in the gene TAFAZZIN.

TAFAZZIN encodes for an enzyme involved in the final remodeling step of cardiolipin, a key phospholipid localized to the mitochondrial inner membrane. TAFAZZIN deficiency results in abnormal mitochondrial cardiolipin quantity and composition and subsequent mitochondrial dysfunction. Whereas researchers have known the primary biochemical defect in Barth syndrome for several decades, two important questions have remained unanswered: What molecular pathways are impacted by TAFAZZIN deficiency and contribute to resultant mitochondrial dysfunction? And why does deficiency of an enzyme that affects a molecule present in every cell in the body affect such a specific set of tissues? Answering these questions is key to developing treatments for Barth syndrome.
Combined proteomic, metabolomic and functional studies in a CRISPR-edited TAFAZZIN knockout HEK293 cell model recently have offered insight into these questions. Among the molecular abnormalities that researchers at the Johns Hopkins School of Medicine identified in this cellular model were defects in the expression, assembly and function of complex I of the mitochondrial respiratory chain. The researchers also found increased expression of presenilin-associated rhomboidlike protein, a protease localized to the inner mitochondrial membrane, and abnormal cleavage of its downstream target, phosphoglycerate mutase 5. Thus, TAFAZZIN deficiency affects mitochondrial respiratory chain function and quality control.
The researchers found that both elamipretide, a molecule that binds to cardiolipin, and bromoenol lactone, which inhibits nascent cardiolipin deacylation, partially remediate these mitochondrial defects. Determining if these pathways are differentially impacted in spared versus affected tissues may help researchers understand what causes the pleiotropic effects of TAFAZZIN deficiency and suggest therapeutic approaches.
In addition to demonstrating the effects of cardiolipin targeting in cellular models of TAFAZZIN deficiency in the lab, this approach has shown clinical promise. In a recent study published in the journal Genetics in Medicine, clinical researchers at the Johns Hopkins School of Medicine described results of a placebo-controlled, crossover clinical trial to investigate the role of elamipretide in 12 patients affected by Barth syndrome. The study participants showed improvement in multiple clinical parameters, including muscle strength, exercise tolerance and cardiac stroke volume, after 48 weeks of treatment.
Together, these studies show the translational potential of cellular disease modeling and pathway targeting in lipid metabolism disorders.
Enjoy reading 91影库Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91影库Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.