91影库

Journal News

From the journals: MCP

Vaishnavi Muralikrishnan
Sept. 30, 2021

DNase therapy for COVID-19 recovery. A new protein biomarker for acute spinal cord injury. How environmental exposures affects male reproductive functions. Read about papers on these topics recently published in the journal Molecular & Cellular Proteomics.

DNase therapy for COVID-19 recovery

COVID-19 can cause symptoms such as pneumonia and acute respiratory distress syndrome, or ARDS. In patients that develop ARDS, the disease usually is characterized by hypoxemia, a below-normal blood oxygen level; neutrophilia, an elevated count of neutrophils (a type of white blood cells); and thick mucus buildup in the air passages of lungs. When these symptoms occur, patients’ breathing becomes labored, and they may require oxygen therapy using mechanical ventilators or extracorporeal membrane oxygenation, commonly known as life support. These methods have harmful side effects, however, and ventilators have been in limited supply during the pandemic. 

NIAMS Systemic Autoimmunity Branch/NIH
DNase therapy can be used to target neutrophil extracellular traps, such as the ones pictured here, to treat patients with severe COVID-19 infections.

In ARDS, excessive buildup of gelatinous and viscous sputum in the lungs can obstruct the airways. Based on knowledge of similar symptoms in patients with ARDS and cystic fibrosis, or CF, researchers have hypothesized that the viscous sputum production in COVID-19 is due to neutrophils. In ARDS and CF, neutrophils produce extracellular DNA bound to granular proteins known as neutrophil extracellular traps, or NETs, which are released in response to bacterial or viral infection, causing the sputum to become viscous. In previous studies, blood plasma of COVID-19 patients showed molecular signatures of NETs. Researchers did not yet know the molecular composition of sputum in COVID-19 patients. 

In a published in the journal Molecular & Cellular Proteomics, Jane Fisher and colleagues at Lund University in Sweden confirmed the presence of NETs in sputum and plasma samples from COVID-19 patients using techniques such as data-independent acquisition mass spectrometry, or DIA-MS, and immunofluorescence. Using a strategy previously tested in patients with CF, they treated a small group of patients with severe COVID-19 symptoms with enzyme recombinant human deoxyribonuclease I, or rhDNase, which degrades extracellular DNA in the sputum. They analyzed the sputum and blood plasma after treatment and found both a marked reduction of NETs and reduced dependency on external high-flow oxygen therapy in these patients. Thus, targeting NETs using rhDNase may have potential therapeutic advantages in treating severe COVID-19 patients.

A protein biomarker for acute spinal cord injury

According to the World Health Organization, as many as half a million individuals worldwide experience spinal cord injury, or SCI, each year. In recent years, researchers have identified numerous treatments for SCI that have been successful in preclinical studies. However, most of these treatments fail in clinical trials, because preclinical trials are conducted on lab animals and researchers cannot predict accurately their relevance to humans. 

To gain a deeper understanding of SCI, Michael Skinnider and colleagues from the University of British Columbia in Canada performed a targeted proteomic analysis on the cerebrospinal fluid and blood serum samples from 111 SCI patients. They also compared evolutionarily conserved changes in pigs and humans with SCI to identify biomarkers that define baseline after injury and neurological recovery six months after injury. In their published in the journal Molecular & Cellular Proteomics, the researchers describe using these studies to identify glial fibrillary acidic protein, or GFAP, as a biomarker that acts as a cross-species outcome measure. The results of this study demonstrate a new opportunity to investigate the biology of acute SCI.

How environmental exposures affect male reproductive functions

Seminal vesicles are an important part of the male reproductive accessory system and are involved in the secretion of seminal plasma, a viscous fluid containing several bioactive molecules that support male reproductive function after ejaculation. The components of seminal plasma are critical to regulating conception and fetal health. Thus, researchers think environmental insults that affect male reproductive function also may affect the seminal vesicles and thereby have an impact on the composition of its secretions.

In a published in the journal Molecular & Cellular Proteomics, David A. Skerrett–Byrne and colleagues at the University of Newcastle, Australia, completed the first proteomic assessment of mouse seminal vesicles and assessed the impact of the reproductive toxicant acrylamide on this tissue.They identified a total of 5,013 proteins in the seminal vesicle proteome and found that 311 of these proteins were altered due to acrylamide exposure. They showed that acrylamide caused oxidative stress in the seminal vesicles and surrounding smooth muscles, leading to a dysregulation in the proteins involved in cell proliferation, survival and death. In addition, acrylamide exposure led to a decrease in the protein content and the quantity of seminal vesicle secretion. In summary, this study confirms that exposure to reproductive toxins affects male accessory gland functions and underscores the importance of studying the response of all male reproductive tissues when assessing the impact of environmental stressors on reproductive functions.

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Vaishnavi Muralikrishnan

Vaishnavi Muralikrishnan is a Ph.D. candidate at Indiana University. She studies ovarian cancer stem cells in the laboratory of Kenneth Nephew. She is passionate about science communication and enjoys her naps and drinking chai.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.