91影库

Journal News

From the Journals: JBC

Seema Nath
Aug. 16, 2024

Maternal metabolite promotes offspring survival. Unraveling the tick’s blood-sucking strategy. Connecting obesity and liver diseases. Read about these papers recently published in the Journal of Biological Chemistry.

Maternal metabolite promotes offspring survival

Recent studies have shown that not only genetic information but also information from RNA, proteins and metabolites can be transferred across generations and influence offspring phenotype. Of these molecules, parental metabolites can affect the lifespan and metabolism of fruit fly offspring. However, scientists know little about how the maternal metabolic environment affects progeny. In a recent , published in the Journal of Biological Chemistry, Naoto Hikawa and colleagues at the University of Tokyo used targeted liquid chromatography–mass spectrometry analyses of the fly ovary, transcriptome analyses of oocytes and other biochemical techniques to fill this gap.

The metabolite kynurenine, or Kyn, is produced upon tryptophan metabolism. The authors’ previous studies revealed that the fat body, a fruit fly organ similar to the mammalian liver and fat tissues, regulates Kyn levels in fly larvae. Using liquid chromatography–mass spectrometry analyses of ovaries of different mating-aged flies, the authors revealed that Kyn production significantly increased after mating. They also established, using genetic knockdown studies, that Kyn levels mediate communication between the fat body and ovary. Furthermore, elevated Kyn levels increased offspring starvation resistance and maintained lipid homeostasis.

This study underscores the importance of a single maternal metabolite, Kyn, which can affect offspring survival. Furthermore, these results suggest that parental dietary routine affects the lifespan and metabolism of the next generation. As maternal metabolites have been found to affect disease outcomes in humans with autism and other neurodevelopmental disorders, modulating parental diets could be a key factor to alleviate similar conditions.

Unraveling the tick’s blood-sucking strategy

Ticks are responsible for spreading many diseases via blood transfusion, including Lyme disease. To do this, ticks use blood-sucking machinery, including the anticoagulant madanin, which helps them ingest and manage large amounts of blood without coagulation. The salivary enzyme, tyrosylprotein sulfotransferase, or TPST, can enhance madanin’s anticoagulant activity by 1,000-fold via tyrosine, or Tyr, sulfation. However, researchers know little about the mechanism by which TPST sulfates its target.

Using X-ray crystallography, docking models and other biophysical studies, Misa Yoshimura at Kyushu University and colleagues showed that TPST targets two tyrosine residues, Tyr51 and Tyr54, of the madanin core. They published their in the Journal of Biological Chemistry.

The authors crystalized TPST in complex with a peptide mimic of the madanin core. They showed that madanin Tyr51 pioneers the catalytic act and addition of a sulfite group to either of the tyrosine residues, which facilitates sulfation of the remaining tyrosine residue. This process occurs via the nucleophilic substitution type 2 reaction, SN2, similar to how TPST human analogs TPST1 and TPST2 interact with human complement C4 and gastrin.

These findings could be used to help manage the tick population and control tick-borne diseases. They may also lead to the development of novel anticoagulants, blood thinners and therapeutics that prevent thrombotic disease.

Connecting obesity and liver diseases

According to the World Health Organization, obesity is one of the most rapidly growing chronic, progressive diseases, and it is associated with insulin resistance and fatty liver diseases. An imbalance of the fatty acid metabolism in obese individuals can lead to hepatocyte stress and may drive liver disease progression.

Under obesity-induced stress, the endoplasmic reticulum, which maintains the cellular protein equilibrium, induces T-cell death–associated gene 51, or TDAG51, which can regulate oxidative stress, in mice. TDAG51 deficiencies in mice promote obesity; however, researchers do not completely understand the mechanism of this disease association.

In recent research, Tamana Yousof at McMaster University and an international team showed that TDAG51 supplementation acts to inhibit lipogenesis and promote fatty acid oxidation to improve insulin sensitivity and reduce body weights of high-fat diet–fed mice. Their was published in the Journal of Biological Chemistry.

The group used several transgenic mouse models, fed them various fat-containing diets and induced ectopic expression of liver-specific TDAG51 fused with GFP. Then, the authors used a series of histology and fluorescent imaging, biochemical and statistical analyses, metabolic studies and other molecular biology techniques to show that hepatic TDAG51 can lower hepatic and serum triglycerides. Restoring hepatic TDAG51 in deficient mice lowered hepatic lipid levels, which reduced the liver weight.

These results indicate that TGA51 supplementation may be a viable therapeutic approach for treating obesity and insulin resistance associated with nonalcoholic fatty liver disease.

Enjoy reading 91影库Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Seema Nath

Seema Nath is a postdoctoral research fellow at the University of Texas Health Science Center at San Antonio. She is an 91影库volunteer contributor.

Get the latest from 91影库Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥21 in Cambridge, Massachusetts.