Corals and sea anemones turn sunscreen into toxins
Sunscreen bottles are frequently labeled as “reef-friendly” and “coral-safe.” These claims generally mean that the lotions replaced oxybenzone — a chemical that can harm corals — with something else. But are these other chemicals really safer for reefs than oxybenzone?
This question led , two , to team up with who study . Our goal was to uncover how sunscreen harms reefs so that we could better understand which components in sunscreens are really “coral-safe.”
In , published in Science, we found that when corals and sea anemones absorb oxybenzone, , molecules that are harmless in the dark but become toxic under sunlight.

Protecting people, harming reefs
Sunlight is made of many different wavelengths of light. Longer wavelengths — like visible light — are typically harmless. But light at shorter wavelengths — like ultraviolet light — can pass through the surface of skin and damage DNA and cells. Sunscreens, including oxybenzone, work by absorbing most of the UV light and converting it into heat.

Coral reefs around the world have suffered in recent decades from . Some scientists thought that sunscreens coming off of swimmers or from wastewater discharges could also be harming corals. They conducted lab experiments that showed that oxybenzone concentrations as low as 0.14 mg per liter of seawater can . While most field samples typically have lower sunscreen concentrations, one popular snorkeling reef in the U.S. Virgin Islands — more than 10 times the lethal dose for coral larvae.
Likely inspired by this research and a number of to , Hawaii’s legislators in 2018 to ban oxybenzone and another ingredient in sunscreens. Soon after, lawmakers in other places with coral reefs, like the , and , implemented their own bans.
There is still an whether the concentrations of oxybenzone in the environment are high enough to damage reefs. But everyone agrees that these chemicals can cause harm under certain conditions, so understanding their mechanism is important.

Sunscreen or toxin
While laboratory evidence had shown that sunscreen can harm corals, very little research had been done to understand how. Some studies suggested that oxybenzone , disrupting reproduction and development. But another theory that our team found particularly intriguing was the possibility that the sunscreen behaved as a .
To test this, we used the sea anemones our colleagues breed as a model for corals. Sea anemones and corals are closely related and share a lot of biological processes, including a symbiotic relationship with algae that live within them. It is , so anemones are typically much better for lab-based studies like ours.
We put 21 anemones in test tubes full of seawater under a lightbulb that emits the full spectrum of sunlight. We covered five of the anemones with a box made of acrylic that blocks the exact wavelengths of UV light that oxybenzone normally absorbs and interacts with. Then we exposed all the anemones to 2 mg of oxybenzone per liter of seawater.
The anemones under the acrylic box were our “dark” samples and the ones outside of it our control “light” samples. Anemones, like corals, have a translucent surface, so if oxybenzone were acting as a phototoxin, the UV rays hitting the light group would trigger a chemical reaction and kill the animals — while the dark group would survive.
We ran the experiment for 21 days. On Day Six, the first anemone in the light group died. By Day 17, . By comparison, none of the five anemones in the dark group died during the entire three weeks.

Metabolism converts oxybenzone to phototoxins
We were surprised that a sunscreen was behaving as a phototoxin inside the anemones. We ran a chemical experiment on oxybenzone and confirmed that, on its own, it behaves as a sunscreen and not as a phototoxin. It’s only when the chemical was absorbed by anemones that it became dangerous under light.
Any time an organism absorbs a foreign substance, its cells try to get rid of the substance using various metabolic processes. Our experiments suggested that one of these processes was turning oxybenzone into a phototoxin.
To test this, we analyzed the chemicals that formed inside anemones after we exposed them to oxybenzone. We learned that our anemones had replaced part of oxybenzone’s chemical structure — a specific hydrogen atom on an alcohol group — with a sugar. Replacing hydrogen atoms on alcohol groups with sugars is something that and commonly do to make chemicals less toxic and more water soluble so they are easier to excrete.

But when you remove this alcohol group from oxybenzone, oxybenzone ceases to function as a sunscreen. Instead, it holds on to the energy it absorbs from UV light and kicks off a series of that . Rather than turning the sunscreen into a harmless, easy-to-excrete molecule, the anemones .
When we ran similar experiments with mushroom corals, we found something surprising. Even though , they did not die from oxybenzone and light exposure during our entire eight-day experiment. The coral made the same phototoxins from oxybenzone, but all of the toxins were stored in the symbiotic algae living in the coral. The algae seemed to absorb the phototoxic byproducts and, in doing so, likely protected their coral hosts.

We suspect that the corals would have died from the phototoxins if they did not have their algae. It is not possible to keep corals without algae alive in the lab, so we did some experiments on anemones without algae instead. These anemones died about two times faster and had almost three times as many phototoxins in their cells compared than the same anemones with algae.
Coral bleaching, ‘reef-safe’ sunscreens and human safety
We believe there are a few important takeaways from our effort to better understand how oxybenzone harms corals.
First, — in which the corals expel their algal symbionts because of high seawater temperatures or other stressors — likely leave corals particularly vulnerable to the toxic effects of sunscreens.
Second, it’s possible that oxybenzone could also be dangerous to other species. In our study, we found that human cells can also turn oxybenzone into a potential phototoxin. If this happens inside the body, where no light can reach, it’s not an issue. But if this occurs in the skin, where light can create toxins, it could be a problem. Previous studies have suggested that oxybenzone , and some researchers have recently .
Finally, the chemicals used in many alternative “reef-safe” sunscreens contain the same alcohol group as oxybenzone — so could potentially also be converted to phototoxins.
We hope that, taken together, our results will lead to safer sunscreens and help inform efforts to protect reefs.
This article is republished from under a Creative Commons license. Read the .
Enjoy reading 91Ó°¿âToday?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91Ó°¿âToday
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Scientists find unexpected correlation between age and HDL-C levels
In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.

Computational tool helps scientists create novel bug sprays
Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.