91Ӱ

Journal News

New mass spectrometry assay speeds up UTI diagnosis

Jessica Desamero
Feb. 25, 2025

The urinary tract is a common site for bacterial infections that affect millions worldwide. UTIs are most often caused by E. coli and are treated with antibiotics.

To test for the bacterial cells in urine, doctors use a culture system to grow microorganisms. They then use an instrument called matrix-assisted laser desorption ionization time-of-flight, or MALDI–TOF, mass spectrometry to detect and identify bacterial species in the culture.

Using LS–MC, researchers in Quebec have reduced the time needed for urinalysis from days to minutes.
via Wikimedia Commons
Using LC–MS, researchers in Quebec have reduced the time needed for urinalysis from days to minutes.

MALDI–TOF analysis is generally accurate, but because of the time needed to grow culture, it takes 24-48 hours to obtain results. This can delay treatment, prolong patient suffering and may contribute to increased occurrence of antimicrobial-resistant pathogens. Therefore, with bacterial infections such as UTIs, researchers want to develop quicker methods of detection.

In a recent published in the journal Molecular & Cellular Proteomics, researchers at the Centre Hospitalier Universitaire de Quebec proposed a faster method to identify and quantify UTI infections in urine samples.

Clarisse Gotti, Florence Roux–Dalvai and their team used a technique called liquid chromatography–mass spectrometry, or LC–MS, to identify and quantify proteins. They suggested clinicians should use LC–MS for urine analysis, rather than MALDI–TOF because it is more efficient, specific and sensitive.

Most importantly, LC–MS can analyze urine samples directly, eliminating the need to grow bacterial cultures.

“There is, for now, a strong limitation in infection diagnosis in using bacterial cultures,” Roux–Dalvai said. “We don't need a bacterial culture (for LC–MS).”

In a previously published study, the team established that LC–MS can identify bacterial species in urine by monitoring MS protein signatures, which can then be used for UTI diagnosis. Moreover, they combined LC–MS with machine learning algorithms to better differentiate unique peptides and distinguish UTI-causing species from other bacterial species. This allows for more accurate analysis.

A few downsides to this first method include a lack of robustness, high costs and relatively low throughput. In their recent paper, the researchers redesigned their initial strategy so that their method can be run routinely for potential clinical use.

“We demonstrated that the bacteria can not only be identified through this process, but they can also be quantified, which is important in the case of UTIs, because you need to know the level of infection to know if it requires an antibiotic therapy or not,” Roux–Dalvai said.

In their redesign, they reduced the volume of urine required for analysis, which allows for faster sample preparation. They also switched from a more expensive, high-resolution detection mode and MS instrument to one that costs less. Their updated strategy reduced turnaround time while maintaining the quality of bacterial detection.

“For the moment, we can have results in about 10-15 minutes,” Roux–Dalvai said.

In the future, they hope to further reduce the time needed to process urine samples and enrich the UTI peptide signature to make the bacteria easier to detect.

“We want to add information in the signature about whether the strains are resistant or not,” Roux–Dalvai said.

After that, they aim to repurpose their method to detect other types of infections.

Enjoy reading 91ӰToday?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jessica Desamero

Jessica Desamero is a graduate of the biochemistry Ph.D. program at the City University of New York Graduate Center. She volunteers with the science outreach organization BioBus, and she is an 91ӰToday volunteer contributor.

Get the latest from 91ӰToday

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Feature

Before we’ve lost what we can’t rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader–Willi syndrome.

Using 'nature’s mistakes' as a window into Lafora disease
Feature

Using 'nature’s mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer’s code through functional connections
News

Cracking cancer’s code through functional connections

July 2, 2025

A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17–21 in Cambridge, Massachusetts.