Campbell builds partnerships to study muscle biology
always knew he wanted “a job with no tie,” he said. His daily commute in a hot train to and from Wall Street for a summer college job reinforced that preference.

More than four decades later and now a Howard Hughes Medical Institute investigator at the University of Iowa, Campbell might be tieless when he receives the 91Ӱ and Molecular Biology’s 2020/2021 Herbert Tabor Research Award. In a joint nomination letter, Gerald W. Hart and Lance Wells of the University of Georgia called Campbell’s lab “the world leader in the study of the molecular mechanisms of muscular dystrophy.”
Campbell’s group has published more than 450 papers, many on groundbreaking discoveries such as the identification and characterization of dystroglycan as an extracellular matrix receptor involved in anchoring the muscle membrane and cytoskeleton to the basement membrane. He also is dedicated to maintaining the highest standards in training and mentorship for students and postdoctoral fellows in his lab.
After starting his lab in the 1980s, Campbell realized he needed dystrophin mutant tissues to test a hypothesis. He met a physician who routinely operated on patients with Duchenne muscular dystrophy, a genetic disorder involving a dystrophin deficiency. During the operations, tissues were removed and discarded. Campbell started to collect these discarded tissues for experiments that confirmed his hypothesis.
This began a decades-long collaboration with physicians around the world. It was also the conceptual beginning of the Wellstone Muscular Dystrophy Cooperative Research Center, dedicated to diagnosis and development of therapeutic approaches. Campbell is its director.
When high schoolers ask about joining his lab, Campbell encourages them first to try odd jobs and learn to interact with all kinds of people; his high school job at a cemetery and his Wall Street job in college taught him a lot about working with people.
Elucidating mechanisms underlying dystrophies
Kevin Campbell’s lab focused on muscle excitation contraction coupling until a failed hypothesis (that dystrophin associated with Ca2+ channel) opened a new research direction. His team purified and later cloned and characterized dystroglycan. They elucidated the molecular pathway involved in dystroglycan maturation and how mutations in dystroglycan processing enzymes therein cause muscular diseases.
The lab studied the functions of two molecules involved in dystroglycan maturation and implicated in muscular dystrophies: LARGE and POMK. They showed that LARGE is a bifunctional glycosyltransferase that synthesizes a matriglycan, a polysaccharide containing a novel O-glycan. They found a mechanism where one disaccharide suffices for high-affinity binding of the extracellular matrix independent of the underlying protein.
POMK previously was thought to be a pseudokinase because its structure lacks several amino acids thought to be essential for a kinase. Campbell’s group in collaboration with Jack Dixon’s lab found that the ER-resident POMK adopts a kinase fold due to formation of disulfide bonds, a finding that has reinvigorated the pseudokinase research field.
Jamey D. Marth wrote in support of the award nomination that such discoveries make Campbell “the most innovative and accomplished biomedical researcher in the field of muscular dystrophy.”
Enjoy reading 91ӰToday?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91ӰToday
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles

Fliesler wins scientific and ethical awards
He is being honored by the University at Buffalo and the American Oil Chemists' Society for his scientific achievements and ethical integrity.

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

91Ӱmembers recognized as Allen investigators
Ileana Cristea, Sarah Cohen, Itay Budin and Christopher Obara are among 14 researchers selected as Allen Distinguished Investigators by the Paul G. Allen Family Foundation.

AI can be an asset, 91Ӱeducators say
Pedagogy experts share how they use artificial intelligence to save time, increase accessibility and prepare students for a changing world.

91Ӱundergraduate education programs foster tomorrow’s scientific minds
Learn how the society empowers educators and the next generation of scientists through community as well as accreditation and professional development programs that support evidence-based teaching and inclusive pedagogy.