Seeking new techniques to track protein breakdown
Jana Zecha has developed techniques that will help researchers learn how protein modifications can affect their stability.Cells are protein factories, constantly making new proteins and breaking down damaged or unnecessary ones. Cells must regulate these processes tightly for thousands of proteins to support cellular function, and Jana Zecha has developed a new technique to monitor this protein turnover.

During her early biology courses in Burghausen, a small town in Bavaria, Zecha became curious about how single molecules work together to produce a functioning organism. She earned a bachelor’s degree at the Technical University of Munich, completing a thesis project on gene expression in gestational diabetes. She became interested in technologies that scientists could harness to investigate the molecular bases of disease.
Zecha remained in Munich to work in group, earning a master’s degree and then beginning her Ph.D. research, studying how protein modifications determine their breakdown rates at a cell-wide level. Her project built on earlier work in the K眉ster lab that suggested established methods had difficulty tracking modified proteins.
Using the classical approaches for the measurement of cellular protein turnover,” Zecha said, “many important aspects of cell biology have so far been overlooked or remained ‘invisible.’”
After and data analysis approaches, she could track breakdown and production of thousands of modified proteins over time. Her work has laid the foundation for future investigations into how protein modifications can affect their stability.
Zecha enjoys teaching young scientists. She has mentored undergraduate researchers in the K眉ster lab and has taught courses in Munich and Taiwan.
“Although teaching is, of course, always lots of work,” she said, “for me it is also great fun and a pleasure to pass on my enthusiasm for science and guide and help students to recognize and develop their potential.”
Zecha is in the final stage of her Ph.D. thesis work in Bernhard K眉ster’s lab.
Tagging and tracking modified proteins
Multiple versions of the same protein can arise from a single gene, either through alternative splicing of messenger RNA or through chemical modifications of the final protein product. These modifications can change the protein’s life span, affecting how long it can carry out its function.
Jana Zecha and her colleagues developed a strategy to measure the life spans of thousands of proteins simultaneously. They fed cells amino acids made with heavier carbon and nitrogen isotopes. As the cells digested old proteins and produced new ones, more and more proteins incorporated heavy amino acids. They combined this system with a tagging method to track protein replacement over time.
The protein lives they measured spanned several orders of magnitude; some were broken down and replaced in minutes, while others lasted weeks. Because their data set captured thousands of proteins, the researchers could detect relationships between protein life span and protein abundance, chemical composition and cellular location. They also detected new relationships between modifications and life span.
“Our study has broad implications for basic as well as pharmaceutical research, since many neurodegenerative, age-related and cancer diseases are associated with altered protein life spans,” Zecha said.
The researchers plan to leverage their new tools to connect protein life span with cancer drug efficacy and side effects.
Enjoy reading 91影库Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91影库Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles

From dust to discovery
From makeshift classrooms in Uganda to postdoctoral research in Chicago, MOSAIC scholar Elizabeth Kaweesa builds a legacy in women鈥檚 health.

Fliesler wins scientific and ethical awards
He is being honored by the University at Buffalo and the American Oil Chemists' Society for his scientific achievements and ethical integrity.

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

91影库members recognized as Allen investigators
Ileana Cristea, Sarah Cohen, Itay Budin and Christopher Obara are among 14 researchers selected as Allen Distinguished Investigators by the Paul G. Allen Family Foundation.

AI can be an asset, 91影库educators say
Pedagogy experts share how they use artificial intelligence to save time, increase accessibility and prepare students for a changing world.